EmojiNet: Building a Machine Readable Sense Inventory for Emoji
نویسندگان
چکیده
Emoji are a contemporary and extremely popular way to enhance electronic communication. Without rigid semantics attached to them, emoji symbols take on different meanings based on the context of a message. Thus, like the word sense disambiguation task in natural language processing, machines also need to disambiguate the meaning or 'sense' of an emoji. In a first step toward achieving this goal, this paper presents EmojiNet, the first machine readable sense inventory for emoji. EmojiNet is a resource enabling systems to link emoji with their context-specific meaning. It is automatically constructed by integrating multiple emoji resources with BabelNet, which is the most comprehensive multilingual sense inventory available to date. The paper discusses its construction, evaluates the automatic resource creation process, and presents a use case where EmojiNet disambiguates emoji usage in tweets. EmojiNet is available online for use at http://emojinet.knoesis.org.
منابع مشابه
EmojiNet: An Open Service and API for Emoji Sense Discovery
This paper presents the release of EmojiNet, the largest machine-readable emoji sense inventory that links Unicode emoji representations to their English meanings extracted from the Web. EmojiNet is a dataset consisting of: (i) 12,904 sense labels over 2,389 emoji, which were extracted from the web and linked to machine-readable sense definitions seen in BabelNet; (ii) context words associated ...
متن کاملWord Sense Disambiguation with Very Large Neural Networks Extracted from Machine Readable Dictionaries
In this paper, we describe a means for automatically building very large neural networks (VLNNs) from definition texts in machine-readable dictionaries, and demonstrate the use of these networks for word sense disambiguation. Our method brings together two earlier, independent approaches to word sense disambiguation: the use of machine-readable dictionaries and connectionnist models. The automa...
متن کاملEmoji as Emotion Tags for Tweets
In many natural language processing tasks, supervised machine learning approaches have proved most effective, and substantial effort has been made into collecting and annotating corpora for building such models. Emotion detection from text is no exception; however, research in this area is in its relative infancy, and few emotion annotated corpora exist to date. A further issue regarding the de...
متن کاملCombining Unsupervised Lexical Knowledge Methods for Word Sense Disambiguation
This paper presents a method to combine a set of unsupervised algorithms that can accurately disambiguate word senses in a large, completely untagged corpus. Although most of the techniques for word sense resolution have been presented as stand-alone, it is our belief that full-fledged lexical ambiguity resolution should combine several information sources and techniques. The set of techniques ...
متن کاملBuilding A Chinese WordNet Via Class-Based Translation Model
Semantic lexicons are indispensable to research in lexical semantics and word sense disambiguation (WSD). For the study of WSD for English text, researchers have been using different kinds of lexicographic resources, including machine readable dictionaries (MRDs), machine readable thesauri, and bilingual corpora. In recent years, WordNet has become the most widely used resource for the study of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. International Workshop on Social Informatics
دوره 10046 شماره
صفحات -
تاریخ انتشار 2016